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Abstract
We propose and analyse a model of bidimensional search processes, explicitly
relying on the widely observed intermittent behaviour of foraging animals,
which involves a searcher enjoying minimal orientational and temporal memory
skills. We show analytically that, in the case of non-revisitable targets,
intermittent strategies can minimize the search time, and therefore constitute
real optimal strategies, as opposed to Lévy flights strategy which are optimal
only in the particular case of revisitable targets. Two representative modes
of target detection are presented, and they allow us to determine which
characteristics of the optimal strategy are robust and do not depend on the
specific characteristics of detection mechanisms. In particular, our study tends
to show that the optimal duration of the ballistic phase is a universal feature of
bidimensional intermittent search strategies. Last, by comparing the results of
our minimal model to systematic search strategies, we show that if temporal and
orientational memory skills speed up the search, they do not change the order
of magnitude of the search time.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many physical, chemical or biological processes are initiated by the encounter of a moving
entity, the ‘searcher’, with a specific ‘target’ of unknown position. Striking examples include
diffusion limited reactions [1], such as the association of a protein with its specific target site
on DNA [2–4]. At larger scales, one could also mention the behaviour of animals searching
for food, shelters or partners [5–12], or even human activities such as victim localization by
rescuers [14]. These examples, involving processes of vital importance, underline the necessity
for the searcher to minimize the search time and subsequently adopt the fastest strategy. This
question of determining the trajectories which optimize the search efficiency, put forward in the
early works [7–9], has recently motivated numerous studies in various fields [10, 11, 15–20].
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Besides deterministic trajectories, relevant for instance in the case of organized human
activities, and extensively studied in the context of systematic search [14], random trajectories
have proved to play a crucial role in many search processes (involving for instance a searcher
with fewer abilities). In particular, it has been shown that among the class of randomly
reoriented ballistic trajectories, Lévy flights can optimize the encounter rate with random
targets [9–11]. However, this result holds only when target detection obeys quite specific rules.
Namely, Lévy strategies are optimal only in the particular case of non destructive search: in
this model a target is found as soon as the searcher approaches closer than a given radius of
detection, and is regenerated at the same location after a finite time [9, 11]. Obviously this
prescription, if reasonable in some cases, should not be taken as a general rule. In the relevant
case of destructive search, where each target definitely disappears after the first encounter, or
in the case of a single target, one can show [9] that the trajectories optimizing the encounter
rate with targets are simply linear ballistic motions, and therefore not of Lévy type. However,
in the context of behavioural ecology, if destructive search is widely observed [5, 6], the purely
ballistic strategy predicted by [9] in that case does not explain the generally observed reoriented
animal trajectories [5].

As opposed to these Lévy strategies, where the searcher always moves at constant (and
randomly oriented) velocity, it has been observed that numerous animal species, including
lizards, fishes, and birds [6, 21], actually switch between two very distinct types of behaviour
(and motion) while foraging. These intermittent search strategies combine phases of fast
displacement, non-receptive to the targets, and slow reactive search phases, which only
allow for target detection. If one thinks of an everyday-life situation, for instance the
search for keys lost on a lawn, intermittent strategies are rather intuitive: one searches
a small area carefully, then decides to explore an unvisited region and moves quickly to
relocate and search again. However, the net efficiency of intermittent strategies cannot
be elucidated on qualitative grounds only: if phases of fast displacement allow for the
exploration of unvisited regions, they are also time consuming because they do not permit target
detection.

A model of intermittent search in one dimension has been proposed in [12], and it proved
to provide a satisfactory agreement with experimental data from behavioural ecology. As
dimension two provides a much broader field of applications, in particular for both human and
animal activities, we developed very recently [13] a model of bidimensional intermittent search.
This model was designed to be minimal in the following sense: the searcher has no temporal
memory, as the transition rates between phases are constant, and no orientational memory,
as the direction of ballistic flights of the relocating phases is random. In the framework of
this minimal model, we showed in [13] that bidimensional intermittent search strategies do
optimize the search time for non-revisitable targets. Here, after briefly redefining the model, we
provide a detailed derivation of the main results of [13]: in particular, we explicitly determine
the optimal strategy by calculating the durations of each phases which minimize the search
time for a target. We then put forward further features of this model and give new numerical
simulations which confirm its validity. We also compare the efficiency of this intermittent
searcher enjoying minimal memory skills with different strategies involving a more advanced
searcher enjoying temporal or orientational memory. We show that quite unexpectedly memory
effects are minor and do not change the order of magnitude of the search time. From a
more technical point of view, we also obtain as a by-product the mean first passage time for
a Pearson-type random walk, which belongs to a class of non-trivial problems which have
been investigated for a long time [22–26]. Our approach relies on an approximate analytical
solution based on a decoupling hypothesis, which is validated numerically over a wide range
of parameters.
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Figure 1. Two models of intermittent search: the searcher alternates slow reactive phases (regime 1)
of mean duration τ1, and fast non-reactive ballistic phases (regime 2) of mean duration τ2. Left: the
slow reactive phase is diffusive and detection is infinitely efficient. Right: the slow reactive phase is
static and detection takes place with finite rate k.

2. Model

We start with the same model as already introduced in [13], which we briefly recall here for the
sake of self-consistency. We are interested in a two-state searcher (see figure 1), whose position
is labelled by r. The searcher performs slow reactive phases (denoted 1), randomly interrupted
by fast relocating ballistic flights of constant velocity v and random direction (phases 2).
The duration of each phase i is assumed to be exponentially distributed with mean τi . As it
has been observed that fast motion usually strongly degrades perception abilities [6, 21], we
assume here that the searcher is able to detect a target only during reactive phases 1. Here we
do not aim at modelling the detection phase accurately, which involves complex biological
processes. However, we wish to propose essentially two basic modes of detection, which
lead us to distinguish between two types of reactive phases 1. The first one, referred to in
the following as the ‘dynamic mode’, corresponds to a diffusive modelling (with diffusion
coefficient D) of the search phase as proposed in [12] in agreement with observations for
vision [27], tactile sense or olfaction [5]. In this mode, detection is assumed to be infinitely
fast: a target is found as soon as the searcher–target distance is smaller than a given reaction
radius a. In contrast, in the second mode, denoted as the ‘static mode’, the searcher is immobile
during the search phases, and the reaction occurs with a finite rate k. Note that this description
is quite standard in reaction–diffusion systems [1] or operational searches [14]. Obviously a
more realistic description is obtained by combining both modes and considering a diffusive
searcher with diffusion coefficient D and finite reaction rate k. In order to reduce the number
of parameters and to extract the main features of each mode, we first study them separately
by taking successively the limits k → ∞ and D → 0 of this general case, which we
eventually study numerically in this paper. More precisely, in the above-mentioned limiting
cases, we address the following questions. What is the mean time it takes the searcher to find
a target? Can this search time be minimized? And if so, for which values of the average
durations τi of each phase? How does the mean search time compare with deterministic
strategies?

3. Basic equations

We now present the basic equations combining the two active search modes introduced above in
the case of a point-like target centred in a spherical domain of radius b with reflecting boundary.
Note that this geometry mimics both relevant situations of a single target and of infinitely many
regularly spaced non-revisitable targets. For this process, the mean first passage time (MFPT)
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at a target satisfies the following backward equation [28]:

D∇2
r t1 + 1

2πτ1

∫ 2π

0
(t2 − t1) dθv − kIa(r)t1 = −1 (1)

v ·∇rt2 − 1

τ2
(t2 − t1) = −1 (2)

where t1 stands for the MFPT starting from state 1 at position r, and t2 for the MFPT starting
from state 2 at position r with velocity v. The function Ia is defined by Ia(r) = 1 if |r| � a and
Ia(r) = 0 if |r| > a. In the present form, these integro-differential equations (completed with
boundary conditions explicitly given below) do not seem to allow for an exact resolution with
standard methods. We propose in the following a decoupling approximation which turns out to
be exact in the one-dimensional (1D) case.

3.1. Exact decoupling in one dimension

In one dimension, the velocity associated to the relocating phases assumes two opposite
directions denoted + and −. The analogue of equations (1), (2) in one dimension then reads

D
d2t1
dx2

+ 1

2τ1
(t2+ + t2− − 2t1) − k Ia (x) = −1 (3)

v
dt2+
dx

+ 1

τ2
(t1 − t2+) = −1 (4)

−v
dt2−
dx

+ 1

τ2
(t1 − t2−) = −1. (5)

This system of ordinary differential equations is most conveniently solved by introducing the
auxiliary functions s = (t2+ + t2−)/2 and d = (t2+ − t2−)/2. Summing and subtracting
equations (4) and (5) leads to

d = v

λ2
s′(x) and vd ′(x) + 1

τ2
(t1 − s) = −1. (6)

The initial system of equations (3)–(5) is finally rewritten as

Dt ′′
1 (x) + 1

τ1
(s − t1) − k Ia (x) = −1 (7)

v2τ2s′′(x) + 1

τ2
(t1 − s) = −1 (8)

which can easily be solved by considering the two limiting modes of detection (dynamic or
static).

3.2. Approximate decoupling in two dimensions

We propose here an approximate resolution of the integro-differential equations (1), (2), which
closely parallels the 1D approach. We define the following auxiliary functions:

s(r) = 1

2π

∫ 2π

0
t2 dθv, d(r) = 1

2π

∫ 2π

0
t2v dθv. (9)

Averaging equations (2) and (2) times v over θv, one successively gets

∇ · d − 1

τ2
(s(r) − t1) = −1d = τ2

2π

∫ 2π

0
(v · ∇t2)v dθv, (10)
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which gives in turn

∇ · d = τ2

2π

∑
i, j

∂2

∂xi∂x j
〈viv j t2〉θv (11)

where 〈·〉θv stands for the average over θv. We now make the following decoupling assumption,

〈vi v j t2〉θv � 〈vi v j 〉θv〈t2〉θv = v2

2
δi j s(r), (12)

which leads, together with equation (10), to the diffusion-like equation:

D̃∇2s(r) − 1

τ2
(s(r) − t1) = −1 (13)

where D̃ = v2τ2/2. Rewriting equation (1) as

D∇2t1 + 1

τ1
(s(r) − t1) − kIa(r)t1 = −1, (14)

equations (13) and (14) provide a closed system for the variables s and t1, whose resolution is
presented in the next sections. The key quantity of our study is the search time 〈t〉, defined as
t1 uniformly averaged over the initial position of the searcher

〈t〉 = 2

b2

∫ b

0
t1r dr. (15)

This last averaging reflects the complete ignorance of the target position.
As we proceed to show by comparing our approximate analytical results to numerical

simulations, the validity domain of assumption (12) is much broader than the ‘Brownian’ limit
v → ∞ and τ2 → 0 with D̃ fixed, in which t2 is independent of the direction of v. Indeed, it is
also valid in the limit vτ2 	 b, in which a ballistic phase includes many reorientations due to
successive reflections on the boundary r = b. In addition, as shown previously, this assumption
is exact in one dimension.

4. Solution in the dynamic mode of detection

4.1. Calculation of the search time

We first present the solution of equations (13), (14) in the ‘dynamic mode’ (k → ∞).
We denote by text

i (resp. t int
i ) the MFPT starting from state i and from a position exterior

(resp. interior) to the target. Taking advantage of the spherical symmetry, we have for the
exterior variables

D
d2text

1

dr 2
+ D

1

r

dtext
1

dr
+ 1

τ1

(
sext − text

1

) = −1 (16)

D̃
d2sext

dr 2
+ D̃

1

r

dsext

dr
+ 1

τ2

(
text
1 − sext

) = −1. (17)

As for the interior variables, t int
1 = 0 and

D̃
d2sint

dr 2
+ D̃

1

r

dsint

dr
− 1

τ2
sint = −1. (18)

5



J. Phys.: Condens. Matter 19 (2007) 065141 O Bénichou et al

The general solution of this linear system of ordinary differential equations reads

text
1 (r) = −1

4

r 2(τ1 + τ2)

Dτ1 + D̃τ2

+ A1 + A2 ln(r) + A3 I0(αr) + A4K0(αr)

for a < r < b (19)

sext(r) = (D − D̃)τ2τ1 − r 2(τ1 + τ2)/4

Dτ1 + D̃τ2

+ A1 + A2 ln(r) − Dτ1

D̃τ2

(A3 I0(αr) + A4K0(αr))

for a < r < b (20)

sint(r) = τ2 + A5 I0

(
r

/√
D̃τ2

)
+ A6K0

(
r

/√
D̃τ2

)
for r < a (21)

where Ii and Ki are modified Bessel functions, and α = (1/(Dτ1) + 1/(D̃τ2))
1/2. The

resolution of equations (16)–(18) involves six unknowns Ai , which are determined by the
following boundary conditions:

• sint(r) has to remain finite when r → 0, which leads to A6 = 0;

• the exterior boundary conditions are reflecting, which yields

dtext
1 (b)

dr
= 0 and

dsext(b)

dr
= 0; (22)

• the continuity of t1, s and ds/dr at r = a gives

text
1 (a) = t int

1 (a) = 0 (23)

sext(a) = sint(a) (24)

dsext(a)

dr
= dsint(a)

dr
. (25)

Solving this linear system of six equations with six unknowns, and then averaging over the
initial position of the searcher, we finally obtain for the search time (15)

〈t〉 = (τ1 + τ2)
1 − a2/b2

(α2 Dτ1)2

{
aα(b2/a2 − 1)

M

2L+
− L−

L+

− α2 Dτ1

8D̃τ2

(3 − 4 ln(b/a))b4 − 4a2b2 + a4

b2 − a2

}
(26)

with

L± = I0

(
a

/√
D̃τ2

)
(I1(bα)K1(aα) − I1(aα)K1(bα))

± α

√
D̃τ2 I1

(
a

/√
D̃τ2

)
(I1(bα)K0(aα) + I0(aα)K1(bα))

and

M = I0

(
a

/√
D̃τ2

)
(I1(bα)K0(aα) + I0(aα)K1(bα))

− 4
a2

√
D̃τ2

α(b2 − a2)2
I1

(
a

/√
D̃τ2

)
(I1(bα)K1(aα) − I1(aα)K1(bα)) .
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Figure 2. Simulations (points) versus analytical approximate (line) of the search time in the
‘dynamic mode’: the search time rescaled by the value in the absence of intermittence t0 as a
function of τ2 (left) and ln τ1 (right) (the logarithmic scale has been used due to the flatness of the
minimum), for D = 1, v = 1, b = 226. Left: a = 10, τ1 = 1.37 (green boxes); a = 1, τ1 = 33.6
(blue circles); a = 0.1, τ1 = 213 (red crosses). Right: a = 10, τ2 = 15.9 (green boxes); a = 1,
τ2 = 13.7 (blue circles); a = 0.1, τ2 = 22 (red crosses).

Table 1. Difference between simulations and analytical approximation (26) in the ‘dynamic mode’.
v = 1, D = 1.

b

a 28.2 113 451 1800

10 0.113 0.0972 0.0812
1 0.0279 0.0348 0.0291 0.0348
0.1 0.0151 0.0171 0.0180 0.0167
0.01 0.0129 0.0126 0.00778 0.0147

4.2. Comparison with numerical simulations

In order to check the validity of the previous decoupling approximation, we performed
numerical simulations of the search process. We used the algorithm developed in [29] to
generate the diffusive phases. Expression (26) has proved to be in very good agreement
with numerical simulations for a wide range of the parameters (see figure 2). More
quantitatively, this agreement can be evaluated by computing the following quantity: d =
( 1

N

∑N
i=1

(〈ti 〉− f (τ1,i ,τ2,i ))
2

〈ti 〉2 )
1
2 , with N the number of couples (τ1, τ2) for which we have calculated

〈t〉 in the simulation, and f the function (26). What we found (see table 1) is that the
typical relative error between the approximate theory and the numerical simulations of the
search time is less than 5%. More precisely, this error is small except when the condition
a 
 b is not fulfilled, and depends mainly on a (decreasing with a). Anyway, the
analytical approximate captures very well the position of the minimum obtained from numerical
simulations.

4.3. Optimization of the search time

Three lengths are involved in the problem: a, b and D/v. We investigate here the optimization
of the search time in the three following cases: a < b 
 D/v, a 
 D/v 
 b, D/v 
 a 
 b.

7
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4.3.1. a < b 
 D/v. In that case, intermittence is not favourable. Indeed, the typical time
required to explore the whole domain of radius b is of order b2/D for a diffusive motion, which
is shorter than the corresponding time b/v for a ballistic motion. As a consequence, it is never
useful to interrupt the diffusive phases by merely relocating ballistic phases.

4.3.2. a 
 D/v 
 b. In this second regime, one can use the following approximate formula
for the search time:

〈t〉 = b2

4Dv2α2

τ1 + τ2

τ1τ
2
2

{
4 ln(b/a) − 3 − 2

(vτ2)
2

Dτ1
(ln(αa) + γ − ln 2)

}
, (27)

γ being the Euler constant. An approximate criterion to determine if intermittence is useful
can be obtained by expanding 〈t〉 in powers of 1/τ1 when τ1 → ∞ (τ1 → ∞ corresponds to
the absence of intermittence), and requiring that the coefficient of the term 1/τ1 is negative for
all values of τ2. Using this criterion, we find that intermittence is useful if

√
2 exp(−7/4 + γ )vb/D − 4 ln(b/a) + 3 > 0. (28)

In this case, using equation (27), the optimization of the search time leads to

τ1,min = b2

D

4 ln w − 5 + c

w2(4 ln w − 7 + c)
, τ2,min = b

v

√
4 ln w − 5 + c

w
(29)

where w is the solution of the implicit equation w = 2vb f (w)/D with
√

4 ln w − 5 + c

f (w)
= −8(ln w)2 + (6 + 8 ln(b/a)) lnw − 10 ln(b/a)

+ 11 − c(c/2 + 2 ln(a/b) − 3/2) (30)

and c = 4(γ − ln(2)), γ being the Euler constant. A useful approximation for w is given by

w � 2vb

D
f

(
vb

2D ln(b/a)

)
. (31)

At the minimum, τ1 and τ2 satisfy the following scaling relation:

τ1,min

τ 2
2,min

= v2

D

1

4 ln w − 7
. (32)

As ln w is a very slowly varying function, this optimal strategy corresponds to the case where
the diffusion length is of the same order of magnitude as the ballistic length, as could have been
expected.

On the other hand, the ratio of the minimum value of the search time over its value in
absence of any intermittence is here given by

〈t〉min

t0
∼ 2

{
1

4 ln w − 5
+ wD

bv

4 ln w − 7

(4 ln w − 5)3/2

}{
4 ln b/a − 3 + 2(4 ln w) ln(b/aw)

4 ln b/a − 3 + 4a2/b2 − a4/b4

}
. (33)

If intermittence significantly speeds up the search in this regime (typically by a factor 2), it
does not change the order of magnitude of the search time.

4.3.3. D/v 
 a 
 b. In the last regime D/v 
 a 
 b, the optimal strategy is obtained for

τ1,min ∼ D

2v2

ln2(b/a)

2 ln(b/a) − 1
, τ2,min ∼ a

v
(ln(b/a) − 1/2)1/2. (34)

8
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Figure 3. Values of τ1 and τ2 at the minimum of 〈t〉, obtained via the approximation in the case
a 
 D/v (29) (discontinuous line), via the approximation in the case D/v 
 a (34) (continuous
line), via the minimization of 〈t〉 (26) (crosses), and via the simulations (circles) (which are not
very precise due to the flatness of the minimum), for v = 1, D = 1, b = 113 (red), b = 451 (light
green), and b = 1800 (dark blue). Left: ln τ1,min as a function of ln(av/D). Right: ln τ2,min as a
function of ln(av/D).

This optimal strategy corresponds to a scaling law

τ1,min

τ 2
2,min

∼ D

a2

1

(2 − 1/ ln(b/a))2
(35)

which here does not depend on v.
The ratio of the minimum value of the search time over its value in the absence of

intermittence is then given by

〈t〉min

t0
∼ 8D√

2av

{
1

4 ln(b/a) − 3

I0
(
2/

√
2 ln(b/a) − 1

)
I1

(
2/

√
2 ln(b/a) − 1

) + 1

2
√

2 ln(b/a) − 1

}
. (36)

Here, the optimal strategy leads to a qualitative change of the search time which can
be rendered arbitrarily smaller than the search time in the absence of intermittence when
D/(av) → 0.

4.4. Remarks

We would like to comment on the previous results, and especially on the transitions between
these regimes, which happen to be quite sharp.

First, the behaviour of τ1,min has remarkable features (see figure 3). This quantity sharply
(but continuously) decreases when switching from regime a 
 D/v to regime a 	 D/v, and
quite surprisingly is not monotonic with b in the regime a 
 D/v.

Second, figure 3 clearly shows that τ2,min also displays a sharp (but continuous) change of
monotonicity with respect to a between regimes a 
 D/v and a 	 D/v.

Third, the efficiency of intermittent strategies is clearly illustrated in figure 4. In particular
the search time can be rendered arbitrarily small in the regime a 	 D/v by taking v large.

9
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Figure 4. 〈t〉min/t0 as a function of v in the dynamic case. The numerical minimization of 〈t〉 (26)
(green continuous line), the approximation in the case a 
 D/v (i.e. v 
 D/a) (32) (blue
discontinuous line on the left), the approximation in the case D/v 
 a (i.e. D/a 
 v) (34)
(red discontinuous line on the right). d1 = 1, a = 1, b = 11 300.

5. Solution in the static mode of detection

5.1. Calculation of the search time

In the ‘static mode’ (D → 0), equation (14) becomes

sext = text
1 − τ1 for r > a and sint = t int

1 (1 + kτ1) − τ1 for r < a. (37)

Substituting these expressions in equation (13), we finally obtain

D̃
d2text

dr 2
+ D̃

r

dtext

dr
= −1 − τ1

τ2
for r > a (38)

and

D̃
d2t int

dr 2
+ D̃

r

dt int

dr
− k

τ1

τ2
= −1 − τ1

τ2
for r < a. (39)

The solution of these equations reads

text
1 (r) = − r 2

4D̃

(
1 + τ1

τ2

)
+ B1 ln r + B2 for r > a (40)

t int
1 (r) = 1

k

(
1 + τ1

τ2

)
+ B3 I0

(
r

√
kτ1

D̃τ2

)
+ B4K0

(
r

√
kτ1

D̃τ2

)
for r < a. (41)

The resolution of equation (40) involves four unknowns, which are determined by the four
following boundary conditions.

• First, t int(r) has to remain finite when r → 0, which leads to B4 = 0.
• Second, the exterior boundary conditions are reflecting, which yields

dtext
1 (b)

dr
= 0. (42)

10



J. Phys.: Condens. Matter 19 (2007) 065141 O Bénichou et al

0,5 43,52 2,5 3

3

1,5

3,5

2,5

1

1

2

1,5

<t>

2τ /a

4

1 2

3

1,5

2

43,5

2,5

2,5

1

3

1,5

0,5

3,5

<t>

1τ

Figure 5. Simulations (points) and analytical approximate (lines) in the ‘static mode’. k = 1, v = 1,
b = 56. a = 10 (red crosses) (τ1,min = 2.41, τ2,min = 11.2), a = 1 (blue circles) (τ1,min = 0.969,
τ2,min = 1.88), a = 0.1 (green boxes) (τ1,min = 0.348, τ2,min = 0.242). Left: search time 〈t〉 as a
function of τ2/a, with τ1 = τ1,min. Right: search time 〈t〉 as a function of τ1, with τ2 = τ2,min.

• Last, we express the continuity of t1 and dt1/dr at r = a:

text
1 (a) = t int

1 (a) (43)

dtext
1 (a)

dr
= dt int

1 (a)

dr
. (44)

Solving this linear system of four equations with four unknowns, and then averaging over the
initial position of the searcher, we finally obtain for the search time

〈t〉 = τ1 + τ2

2kτ1y2

{
1

x
(1 + kτ1)(y2 − x2)2 I0(x)

I1(x)

+ 1
4

[
8y2 + (1 + kτ1)

(
4y4 ln(y/x) + (y2 − x2)(x2 − 3y2 + 8)

)]}
(45)

where

x =
√

2kτ1

1 + kτ1

a

vτ2
and y =

√
2kτ1

1 + kτ1

b

vτ2
. (46)

5.2. Comparison with numerical simulations

Here again, this expression (45) is in very good agreement with numerical simulations for a
wide range of parameters (see figure 5 and table 2). The agreement is quantitatively supported

by calculating d = ( 1
N

∑N
i=1

(〈ti 〉− f (τ1,i ,τ2,i ))
2

〈ti 〉2 )
1
2 , where N is the number of couples (τ1, τ2) for

which we have calculated 〈t〉 in the simulation and f is the function given by equation (45).
The error is about 5–8%, and does not seem to depend on a as in the ‘dynamic’ mode, but
rather on a/b. Once again, the minimum obtained from the simulations is very well described
by the analytical approximate.

5.3. Optimization of the search time

In this case, intermittence is trivially necessary to find the target: indeed, if the searcher does
not move, the MFPT is infinite. Once again, we have three characteristic lengths a, b and v/k.

11
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Table 2. Difference between simulations and analytical approximation (45) in the static case.
k = 1, v = 1.

b

a 113 28.2 7.05 1.69 0.564

10 0.0666 0.0821
1 0.0496 0.0574 0.0724
0.1 0.0517 0.0630 0.0754

In the regime b 	 a, the optimization of the search time (45) leads to

τ1,min =
( a

vk

)1/2
(

2 ln(b/a) − 1

8

)1/4

, (47)

τ2,min = a

v
(ln(b/a) − 1/2)1/2 , (48)

which corresponds to the scaling law τ2,min = 2kτ 2
1,min. Note that this relation does not depend

on v, and that these results hold for any v/k.
On the other hand, a very good approximation for the minimum search time is given by

the following truncated 1/v expansion:

〈t〉min = b2

a2k
− 21/4

√
vka3

(a2 − 4b2) ln(b/a) + 2b2 − a2

(2 ln(b/a) − 1)3/4
−

√
2

48ab2v

× {(96a2 − 192b4) ln2(b/a) + (192b4 − 144a2b2) ln(b/a) + 46a2b2

− 47b4 + a4}(2 ln(b/a) − 1)−3/2. (49)

6. Comparison of both modes of detection

First, it should be pointed out that the dynamic mode of detection is always more efficient than
the static mode of detection, as the reaction rate is infinitely fast in the dynamic mode.

Second, the following remarkable characteristics of intermittent search processes can be
extracted from the main results (34) and (47), (48) obtained in the two modes of search. (i) In
both cases the search time 〈t〉 presents a global minimum for finite values of the τi , which
means that intermittence is an optimal strategy. (ii) A very striking and non-intuitive feature
is that both modes of search lead to the same optimal value of τ2,min (when D/v 
 a 
 b).
As this optimal time does not depend on the specific characteristics D and k of the search
mode, it seems to constitute a general property of intermittent search strategies. To investigate
the validity of this assertion further, we have numerically simulated a search process combining
the two previous detection mechanisms. Once again we obtain a global minimum, and the value
of τ2,min is very close to the common value a

v
(ln(b/a) − 1/2)1/2, as soon as D/v 
 a 
 b

(see figure 6).

7. Comparison with systematic search strategies

Up to now, the model under study involved a searcher with minimum memory skills. First, due
to the exponential distribution of the waiting times in each of the two phases, the searcher has no
temporal memory. Second, as the direction of the velocity in the relocating phases is uniformly
distributed, the searcher has no orientational memory. In that sense, the model presented here
is ‘minimal’.

12
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Figure 6. The robustness of the law for τ2,min. The search time 〈t〉 as a function of τ2, with
τ1 = τ1,min, for different descriptions of the search phase: ‘dynamic mode’ (D = 1, k = ∞,
τ1 = 9.19) (black circles), ‘static mode’ (D = 0, k = 1, τ1 = 8.8) (red crosses), intermediate
mode (D = 1, k = 100, τ1 = 0.165) (green squares), another intermediate mode (D = 1, k = 1,
τ1 = 10) (blue diamonds). For all the simulations, a = 100, b = 1800, v = 1.
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Figure 7. Comparison between the search without temporal memory (red circles) and the search
with temporal memory (green squares). 〈t〉 as a function of τ2. ‘Static mode’: k = 1, v = 1,
L = 200, a = 10, τ1 = 2, 6.

In this section, we address the question of determining the influence of this lack of memory
skills on the search efficiency, limiting ourselves to the static detection mechanism.

7.1. Effect of temporal memory

We first investigate numerically the influence of the temporal memory by considering
the extreme case of a complete temporal memory, corresponding to a searcher spending
deterministic times in each of the two phases. In other words, the transitions between states only
occur at times τ1, τ1 + τ2, 2τ1 + τ2, . . .. The numerical simulations reveal that the search time
still presents a global minimum as a function of the two variables τ1 and τ2, but for different
values of τ1 and τ2 (see figure 7). On the other hand, the minimum value of the search time
obtained for this deterministic model is always less than the analogue quantity in the case of
exponentially distributed times, but of the same order of magnitude. More precisely, the gain
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Figure 8. Systematic explorations of space. Left: lawn mower, right: spiral.

is less than 40% in the range of parameters we studied, and decreases when b/a increases.
As a consequence, having temporal memory does not considerably change the search time. A
similar but 1D situation was studied (analytically and numerically) in [30], providing the same
general conclusion.

7.2. Effect of orientational memory

As for the question of evaluating the influence of orientational memory, we have numerically
considered two types of systematic explorations of space. The first one corresponds to the so-
called ‘lawn mower’ strategy (cf figure 8 left) and the second one to a regular spiral (cf figure 8
right).

The search time in the ‘lawn mower’ strategy can be roughly estimated by using a 1D
model. Indeed, the trajectory in a square of side 2b can be ‘unfolded’ into a straight line of
length L such that (2b)2 = 2aL, wherein lies a target of linear size 2a. This effective 1D model
is then very close to the one exposed in section 3.1, except that now there is a single ballistic
state of velocity +v. The equations for the MFPT are in this case (keeping the notations of
previous sections)

1

τ1
(t2 − t1) − k I[0,2a] (x) = −1 (50)

v
dt2
dx

+ 1

τ2
(t1 − t2) = −1. (51)

This system holds for 0 � x � L, and is completed by periodic boundary conditions for the
functions t1, t2. I[0,2a](x) = 1 for 0 � x � 2a and I[0,2a](x) = 0 for 2a < x < L. The
detection time 〈t〉 can be calculated straightforwardly from this approximate 1D model which,
in the large domain limit, leads to the very simple form of the search time:

〈t〉lawn mower ≈ τ1 + τ2

τ2

b2

va
coth

(
akτ1

vτ2(1 + kτ1)

)
. (52)

The ‘spiral’ strategy gives similar values of the search time in the limit a 
 b, as shown
by numerical simulations.

These systematic strategies prove to be always more efficient than our minimal model, but
the relative gain, increasing with b/a, is typically of order 1 (see figure 9). As previously,
memory skills do not significantly improve the search efficiency.

8. MFPT for a Pearson-type random walk

Finally we remark that this model provides as a by-product an approximation for the MFPT
for a Pearson-type random walk in the spherical geometry previously defined: the searcher
performs ballistic flights reoriented at exponentially distributed times, and, as opposed to
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Figure 9. Comparison between the model without memory (simulations (red crosses) and analytical
approximate (45) (red discontinuous line)) with the ‘lawn mower’ systematic strategy (simulations
(green squares) and analytical approximate (green line)) and the spiral systematic strategy (blue
circles). The search time 〈t〉 as a function of τ2. k = 1 (static mode), v = 1.

standard Pearson walks, the target can be found only when the distance between the target
and a reorientation point is less than a. This quantity, obtained here straightforwardly by taking
k → ∞ and τ1 → 0 in equation (45), is written as

〈t〉 = (b2 − a2)2

√
2vab2

I0(a
√

2/vτ2)

I1(a
√

2/vτ2)
+ 1

v2τ2b2

(
b4 ln(b/a) + 1

4
(b2 − a2)(a2 − 3b2 + 4v2τ 2

2 )

)
.

(53)

This approximation of the search time is in good agreement with numerical simulations (see
figure 10). To our knowledge, a similar result for standard Pearson walks is still missing. Note
that in the limit v → ∞, τ2 → 0 with D̃ = v2τ2/2 fixed, the approximate expression (53)
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Figure 10. Simulations (points) versus analytical approximate (line) of the search time for a Pearson
like random walk: the search time rescaled by the value at its minimum as a function of τ2v/a.
v = 1. Left: b = 28.2, a = 10 (blue crosses), a = 1 (red boxes), a = 0.1 (green circles). Right:
a = 1, b = 7.05 (blue circles), b = 28.2 (red boxes), b = 113 (green crosses).

gives

1

8b2 D̃
(b4(4 ln(b/a) − 3) + 4a2b2 − a4) (54)

which is the well known exact expression for the MFPT of a Brownian particle between
concentric spheres [28], with a starting point uniformly distributed in the whole sphere of
radius b. Moreover, for b 	 a, the search time (53) is minimized again for the same value (34)
and (48) of τ2, in agreement with the limit k → ∞ of equations (47), (48).

9. Conclusion

We have studied a two-state model which permits us to optimize the encounter rate with
immobile and non-revisitable targets. This model deeply relies on intermittent search strategies,
widely observed in nature at different scales, as in the case of a protein searching for its specific
site on a DNA molecule, or in the case of animals searching for food. These intermittent
strategies, combining local scanning phases and mere relocating phases, are relevant as soon
as motion and searching activities cannot be performed simultaneously, as is generally the case
when targets are hidden and not directly accessible. Invoking a decoupling approximation
successfully validated by numerical simulations, we have shown analytically that the search
time has a global minimum as a function of the times spent in each phase. In other words, a
searcher for randomly hidden targets has a unique optimal way of sharing its time between local
scanning phases and mere relocating phases, which means that intermittent strategies are real
optimal search strategies. This has to be opposed to Lévy strategies, which are optimal only in
the very specific case of revisitable targets. In addition, we have shown that the optimal duration
of the relocating phases is essentially independent of the detail of the detection mechanism
involved during local scanning phases. As a consequence, it appears to be a universal feature
of intermittent search strategies. Last, in this model, the searcher enjoys minimal memory
skills, in the sense that it has no temporal memory (the transition rates between phases are
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time independent), and no orientational memory (the direction of ballistic flights of relocating
phases is random). Quite unexpectedly, it turns out that more systematic strategies, involving
searchers with either temporal memory or orientational memory, do not change the order of
magnitude of the search time.
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